Predicting pilot error: Testing a new methodology and a multi-methods and analysts approach

Neville A. Stanton, Paul Salmon, Don Harris, Andrew Marshall, Jason Demagalski, Mark S. Young, Thomas Waldmann, Sidney Dekker

a University of Southampton, Transportation Research Group, School of Civil Engineering and the Environment Highfield, Southampton SO17 1BJ, UK
b Accident Research Centre, Monash University, Building 70, Clayton, Victoria 3800, Australia
c Brunel University, BIT-LAB, Uxbridge, Middlesex UB8 3PH, UK
d Cranfield University, Human Factors Group, School of Engineering, Cranfield, Bedford MK43 OAL, UK
e Marshall Associates, London, UK
f University of Limerick, Ireland
g Lund University, Sweden

ABSTRACT

The Human Error Template (HET) is a recently developed methodology for predicting design-induced pilot error. This article describes a validation study undertaken to compare the performance of HET against three contemporary Human Error Identification (HEI) approaches when used to predict pilot errors for an approach and landing task and also to compare analyst error predictions to an approach to enhancing error prediction sensitivity: the multiple analysts and methods approach, whereby multiple analyst predictions using a range of HEI techniques are pooled. The findings indicate that, of the four methodologies used in isolation, analysts using the HET methodology offered the most accurate error predictions, and also that the multiple analysts and methods approach was more successful overall in terms of error prediction sensitivity than the three other methods but not the HET approach. The results suggest that when predicting design-induced error, it is appropriate to use a toolkit of different HEI approaches and multiple analysts in order to heighten error prediction sensitivity.

1. Introduction

Within complex sociotechnical systems around 75% of all accidents and safety compromising incidents are attributed, in part at least, to human error. There are many means of reducing or mitigating human error; one approach involves the use of structured methods to predict the errors that are likely to be made by operators during task performance. Human Error Identification (HEI) works on the premise that an understanding of both the work task and the characteristics of the technology being used allows analysts to predict, a priori, potential errors that may arise from the resulting interaction (Baber and Stanton, 1996; Stanton and Baber, 2002). The use of HEI techniques is now widespread, with applications in a wide range of domains including the nuclear power and petro-chemical processing industries (Kirwan, 1996), air traffic control (Shorrock and Kirwan, 2002), aviation (Harris et al., 2005), space operations (Nelson et al., 1998), health care (Lane et al., 2006) and public technology (Baber and Stanton, 1996).

Despite the superfluity of HEI techniques available (a methods review identified over 50 approaches – see Stanton et al., 2005) and their increased application, they are relatively rarely used in the domain of the civil flight deck. This is surprising since it has previously been established that the major cause of aviation accidents is human error (McFadden and Towell, 1999); around 75% of commercial aviation accidents are attributed to human error (Civil Aviation Authority, 1998). Further, a number of high profile aviation incidents have been attributed, at least in some part, to design-induced human error, including the Nagoya Airbus A300-600 accident (where the pilots could not disengage the go-around mode after inadvertent activation due to a lack of understanding of the automation and poor design of the operating logic in the autoland system), the Cali Boeing 757 accident (where the poor interface design of the flight management computer and a lack of logic checking led to a controlled flight into terrain accident) and the Strasbourg A320 accident at Mont St Odile (where the crew inadvertently set an excessive descent rate instead of manipulating the flight path angle as a result of both functions using a common control interface and an associated poorly designed display).

As part of a DTI/EUREKA! funded project investigating the prediction of pilot error, the authors developed a new HEI...
methodology, the Human Error Template (HET; Marshall et al., 2003), to be used specifically for predicting design induced pilot error on civil flight decks during new flight deck technology certification. The impetus for this came from a US Federal Aviation Administration report (FAA, 1996), which, amongst other things, recommended that flight deck designs be evaluated for their susceptibility to design-induced flight crew errors and also to identify the likely consequences of those errors during the type certification process (Harris et al., 2005).

The aims of this study were twofold. First, we wished to assess the performance of the HET methodology against three contemporary HEI methods, SHERPA (Embrey, 1986), Human Error HAZOP and the Human Error Identification in Systems Tool (HEIST; Kirwan, 1994). The purpose of this was to validate the HET methodology as a tool for predicting design induced pilot error on civil flight decks. It was anticipated that the HET methodology would be more accurate at predicting design induced pilot error than the three contemporary methods, based upon the fact that it was developed specifically for use on flight decks, whereas the other three methods were developed for control room and nuclear power plant tasks. Second, we wished to compare the performance of an approach designed to enhance the accuracy of error predictions, namely the multiple methods and multiple analysts approach, in which the error predictions of different analysts using different methods are pooled in order to enhance error prediction sensitivity.

2. The Human Error Template

The HET methodology uses an external error mode (EEM) taxonomy that was developed from a review of existing HEI methods and an evaluation of incidences of design-induced pilot error. The HET EEM taxonomy comprises the following 12 error types:

- **Fail to execute**, e.g. pilot fails to perform a particular task or action.
- **Task execution incomplete**, e.g. pilot fails to perform a task or action in its entirety.
- **Task executed in the wrong direction**, e.g. pilot turns a knob or moves a lever in the wrong direction.
- **Wrong task executed**, e.g. pilot performs a wrong task or action.
- **Task repeated**, e.g. pilot presses the correct button twice.
- **Task executed on the wrong interface element**, e.g. pilot presses the wrong button.
- **Task executed too early**, e.g. pilot performs a task or action too early in a sequence.
- **Task executed too late**, e.g. pilot performs a task or action too late in a sequence.
- **Task executed too much**, e.g. pilot moves a lever or turns a knob too much.
- **Task executed too little**, e.g. pilot does not move a lever or turns a knob sufficiently.
- **Misread information**, e.g. pilot misreads the information presented by a display.
- **Other**.

The HET EEM taxonomy is applied to each bottom level task step in a Hierarchical Task Analysis (HTA; Stanton, 2006) of the flight task under analysis in order to identify any credible errors. The identification of credible errors is based on the analyst’s subjective judgement and involves the analyst either observing the task being performed or walking through the task themselves either with the flight deck interface itself or with functional drawings and photographs of the interface. For each credible error (i.e. those judged by the analyst to be possible) the analyst provides a description of the form that the error would take, such as, ‘pilot dials in the airspeed value using the heading knob’ or ‘pilot fails to lower the landing gear’. Next, the outcome or consequence associated with the error is described (e.g. the consequence of the pilot dialing in the airspeed using the heading knob would be that the aircraft inappropriately adjusts its heading to that of the erroneously entered speed value). Finally, judgements on the likelihood of the error occurring (Low, Medium or High) and the criticality of the error (Low, Medium or High) are made based on domain expertise and experience. If the identified error is given a ‘high’ rating for both likelihood and criticality, the interface technology in question is rated as a ‘fail’, meaning that it is not suitable for certification. An example HET pro-forma for the task step ‘Dial the speed/mach knob to enter 150 on the IAS/Mach display’ is presented in Table 1. A flowchart depicting the HET procedure is presented in Fig. 1.

3. Validating the Human Error Template

The validity of HEI techniques requires testing to ensure that they are accurate in the prediction of error, whilst the reliability of HEI techniques requires testing to ensure that the techniques offer the same error predictions when used by different analysts for the same task and when used by the same analyst more than once for the same task. Typically, HEI techniques place a great amount of dependence upon the judgement of the analyst and so different analysts may make different predictions regarding the same problem (inter-analyst reliability). Similarly, the same analyst may make different judgments on different occasions (intra-analyst reliability).

A number of HEI technique validation studies have been reported in the literature (e.g. Williams, 1989; Whalley and Kirwan, 1989; Kirwan, 1992a,b, 1998a,b; Kennedy, 1995; Baber and Stanton, 1996; Stanton and Stevenage, 1998). For example, Whalley and Kirwan (1989) evaluated six HEI methods for their ability to accurately predict the errors responsible for four incidents that had previously occurred in the nuclear industry. Similarly, Kennedy (1995) examined the ability of a number of HEI methods to predict the errors attributed as causal factors in 10 major disasters. In conclusion to an evaluation of 12 HEI approaches, Kirwan (1992b) recommended a combination of expert judgement and the Systematic Human Error Reduction and Prediction Approach (SHERPA; Embrey, 1986) as the most valid approach to HEI. Baber and Stanton (1996) tested the validity of SHERPA and Task Analysis For Error Identification (TAFEI; Baber and Stanton, 1996) when used to predict London Underground rail ticket machine errors. It was concluded that both SHERPA and TAFEI provided an acceptable level of validity based upon the data from two expert analysts. Stanton and Stevenage (1998) also tested the validity of SHERPA and a heuristic approach when used to predict error on a vending machine task. It was concluded that SHERPA provided a better means of predicting errors than the heuristic approach did. Moreover, it was reported that SHERPA returned a mean sensitivity index (SI) of 0.76 at Trial 1; 0.74 at Trial 2; and 0.73 at Trial 3, which represent very acceptable levels of validity.

4. Multiple methods and analysts

It is apparent from the validation studies described above that, although achieving acceptable levels of validity (e.g. SHERPA studies typically return sensitivity index scores of around 0.7) there is room for improvement in terms of the accuracy of HEI error predictions. One such approach could be to use a combination of multiple methods and multiple analysts, based on the notion that the accuracy of error predictions may be enhanced by using a range of different but complementary HEI approaches to predict human errors for the same task and also that pooling the error predictions made by a number of different analysts could also enhance the comprehensiveness of the errors predicted. The underlying
assumption is that the shortfalls of each HEI technique and each analyst are compensated for by the other techniques and analysts used (i.e. any errors that method A misses, method B will highlight, and any errors that analyst A misses, analyst B may highlight, and so on) which should enhance error prediction sensitivity and accuracy. Kirwan (1998a,b) first proposed the concept of using a range or ‘toolkit’ of HEI methods to enhance error prediction sensitivity in complex systems. In conclusion to a review of 38 existing HRA/HEI techniques Kirwan (1998a) reported that, since none of the techniques available satisfied all of the 14 criteria against which they were evaluated, a framework or toolkit approach may be the most suitable approach for enhancing the comprehensiveness of the HEI analysis. Kirwan (1998b) suggested practitioners to utilise a framework type approach to HEI, whereby a mixture of independent HRA/HEI tools would be used under one framework.

Although due to its novelty there appears to be nothing within the academic literature stating the strengths and weaknesses of multiple methods and analysts approaches to HEI, it is apparent that, whilst potentially improving error prediction sensitivity, multiple methods and analysts approaches do have some potential weaknesses. First, the false alarm rate (i.e. errors predicted that do not in fact occur) can potentially be increased due to the pooled error data. However, in safety critical industries it may be acceptable to generate a high rate of false alarms in order to ensure that all potential errors are identified. Second, the use of additional methods can significantly increase the level of resources (e.g. time, training, etc.) required to undertake HEI analyses and also the increased data returned will ultimately increase the time required for data analysis.

The three methods, SHERPA, Human Error HAZOP and HEIST were chosen as a result of a literature review of existing HEI methods from which it was concluded that the SHERPA, Human Error HAZOP and HEIST methodologies were the most suited for use in the prediction of potential design induced error on the flight deck. A brief description of the three techniques is provided in the following sections. For a more exhaustive description of the latter three techniques, including example outputs, the reader is referred to Stanton et al. (2005).

5. Systematic Human Error Reduction and Prediction Approach (SHERPA)

SHERPA (Embrey, 1986) was originally developed for use in the nuclear reprocessing industry and is probably the most commonly used HEI approach, with applications in a number of domains, including ticket machines (Baber and Stanton, 1996), vending machines (Stanton and Stevenage, 1998), and in-car radio-cassette machines (Stanton and Young, 1999). SHERPA uses a behavioural approach to identify and reduce human errors based on the assumption that the shortfalls of each HEI technique and each analyst are compensated for by the other techniques and analysts used (i.e. any errors that method A misses, method B will highlight, and any errors that analyst A misses, analyst B may highlight, and so on) which should enhance error prediction sensitivity and accuracy. Kirwan (1998a,b) first proposed the concept of using a range or ‘toolkit’ of HEI methods to enhance error prediction sensitivity in complex systems. In conclusion to a review of 38 existing HRA/HEI techniques Kirwan (1998a) reported that, since none of the techniques available satisfied all of the 14 criteria against which they were evaluated, a framework or toolkit approach may be the most suitable approach for enhancing the comprehensiveness of the HEI analysis. Kirwan (1998b) suggested practitioners to utilise a framework type approach to HEI, whereby a mixture of independent HRA/HEI tools would be used under one framework.

Although due to its novelty there appears to be nothing within the academic literature stating the strengths and weaknesses of multiple methods and analysts approaches to HEI, it is apparent that, whilst potentially improving error prediction sensitivity, multiple methods and analysts approaches do have some potential weaknesses. First, the false alarm rate (i.e. errors predicted that do not in fact occur) can potentially be increased due to the pooled error data. However, in safety critical industries it may be acceptable to generate a high rate of false alarms in order to ensure that all potential errors are identified. Second, the use of additional methods can significantly increase the level of resources (e.g. time, training, etc.) required to undertake HEI analyses and also the increased data returned will ultimately increase the time required for data analysis.

The three methods, SHERPA, Human Error HAZOP and HEIST were chosen as a result of a literature review of existing HEI methods from which it was concluded that the SHERPA, Human Error HAZOP and HEIST methodologies were the most suited for use in the prediction of potential design induced error on the flight deck. A brief description of the three techniques is provided in the following sections. For a more exhaustive description of the latter three techniques, including example outputs, the reader is referred to Stanton et al. (2005).

5. Systematic Human Error Reduction and Prediction Approach (SHERPA)

SHERPA (Embrey, 1986) was originally developed for use in the nuclear reprocessing industry and is probably the most commonly used HEI approach, with applications in a number of domains, including ticket machines (Baber and Stanton, 1996), vending machines (Stanton and Stevenage, 1998), and in-car radio-cassette machines (Stanton and Young, 1999). SHERPA uses a behavioural approach to identify and reduce human errors based on the assumption that the shortfalls of each HEI technique and each analyst are compensated for by the other techniques and analysts used (i.e. any errors that method A misses, method B will highlight, and any errors that analyst A misses, analyst B may highlight, and so on) which should enhance error prediction sensitivity and accuracy. Kirwan (1998a,b) first proposed the concept of using a range or ‘toolkit’ of HEI methods to enhance error prediction sensitivity in complex systems. In conclusion to a review of 38 existing HRA/HEI techniques Kirwan (1998a) reported that, since none of the techniques available satisfied all of the 14 criteria against which they were evaluated, a framework or toolkit approach may be the most suitable approach for enhancing the comprehensiveness of the HEI analysis. Kirwan (1998b) suggested practitioners to utilise a framework type approach to HEI, whereby a mixture of independent HRA/HEI tools would be used under one framework.

Although due to its novelty there appears to be nothing within the academic literature stating the strengths and weaknesses of multiple methods and analysts approaches to HEI, it is apparent that, whilst potentially improving error prediction sensitivity, multiple methods and analysts approaches do have some potential weaknesses. First, the false alarm rate (i.e. errors predicted that do not in fact occur) can potentially be increased due to the pooled error data. However, in safety critical industries it may be acceptable to generate a high rate of false alarms in order to ensure that all potential errors are identified. Second, the use of additional methods can significantly increase the level of resources (e.g. time, training, etc.) required to undertake HEI analyses and also the increased data returned will ultimately increase the time required for data analysis.

The three methods, SHERPA, Human Error HAZOP and HEIST were chosen as a result of a literature review of existing HEI methods from which it was concluded that the SHERPA, Human Error HAZOP and HEIST methodologies were the most suited for use in the prediction of potential design induced error on the flight deck. A brief description of the three techniques is provided in the following sections. For a more exhaustive description of the latter three techniques, including example outputs, the reader is referred to Stanton et al. (2005).

5. Systematic Human Error Reduction and Prediction Approach (SHERPA)

SHERPA (Embrey, 1986) was originally developed for use in the nuclear reprocessing industry and is probably the most commonly used HEI approach, with applications in a number of domains, including ticket machines (Baber and Stanton, 1996), vending machines (Stanton and Stevenage, 1998), and in-car radio-cassette machines (Stanton and Young, 1999). SHERPA uses a behavioural approach to identify and reduce human errors based on the assumption that the shortfalls of each HEI technique and each analyst are compensated for by the other techniques and analysts used (i.e. any errors that method A misses, method B will highlight, and any errors that analyst A misses, analyst B may highlight, and so on) which should enhance error prediction sensitivity and accuracy. Kirwan (1998a,b) first proposed the concept of using a range or ‘toolkit’ of HEI methods to enhance error prediction sensitivity in complex systems. In conclusion to a review of 38 existing HRA/HEI techniques Kirwan (1998a) reported that, since none of the techniques available satisfied all of the 14 criteria against which they were evaluated, a framework or toolkit approach may be the most suitable approach for enhancing the comprehensiveness of the HEI analysis. Kirwan (1998b) suggested practitioners to utilise a framework type approach to HEI, whereby a mixture of independent HRA/HEI tools would be used under one framework.

Although due to its novelty there appears to be nothing within the academic literature stating the strengths and weaknesses of multiple methods and analysts approaches to HEI, it is apparent that, whilst potentially improving error prediction sensitivity, multiple methods and analysts approaches do have some potential weaknesses. First, the false alarm rate (i.e. errors predicted that do not in fact occur) can potentially be increased due to the pooled error data. However, in safety critical industries it may be acceptable to generate a high rate of false alarms in order to ensure that all potential errors are identified. Second, the use of additional methods can significantly increase the level of resources (e.g. time, training, etc.) required to undertake HEI analyses and also the increased data returned will ultimately increase the time required for data analysis.

The three methods, SHERPA, Human Error HAZOP and HEIST were chosen as a result of a literature review of existing HEI methods from which it was concluded that the SHERPA, Human Error HAZOP and HEIST methodologies were the most suited for use in the prediction of potential design induced error on the flight deck. A brief description of the three techniques is provided in the following sections. For a more exhaustive description of the latter three techniques, including example outputs, the reader is referred to Stanton et al. (2005).
such as, ‘pilot dials in wrong airspeed’ and identifies any con-
sequences associated with the error and also any recovery steps that
would need to be taken in event of the error being made. Finally,
ordinal probability (Low, Medium or High), criticality (Low,
Medium or High) and potential design remedies are recorded.

6. Human Error Hazard and Operability Study (HAZOP)

HAZOP (Kletz, 1974; cited in Swann and Preston, 1995) is a well-
established engineering approach that was developed in the late
1960s by ICI (Swann and Preston, 1995) for use in process design
audit and engineering risk assessment (Kirwan, 1992a). Typically
undertaken as a group approach, HAZOP involves analysts applying
guidewords, such as Not done, More than or Later than, to each task
step in order to identify potential errors that may occur. Many
variations on the HAZOP approach exist, and the Human Error
HAZOP approach was developed for dealing with human error
issues (Kirwan and Ainsworth, 1992). In the present study, a set of
Human Error HAZOP guidewords (Whalley, 1988; cited in Kirwan
and Ainsworth, 1992) were used. Each guideword is applied to each
task step to identify any credible errors. Once a description of the
error is provided, the consequences, cause and recovery path of the
error are described. Finally, redesign suggestions are made to either
prevent the error from occurring or mitigate its consequences.

7. Human Error Identification in Systems Tool (HEIST)

The HEIST technique (Kirwan, 1994) is a component of the HERA
methodology (Kirwan, 1998b) and uses error identifier questions
(e.g. “Could the operator fail to carry out the act in time?”) linked to
behaviour tables and an external error mode taxonomy that are
designed to prompt the analyst to identify potential errors. The task
step in question is first classified into one of the HEIST behavioural
categories and then the associated HEIST behaviour table and error
identifier prompts are used to encourage the analyst to identify any
errors that could potentially occur during performance of the task
in question. For each credible error identified, the system cause or
psychological error mechanism and error reduction strategy (both
of which are provided in the HEIST behaviour tables) is recorded
and the consequences associated with the error are described.

The main differences between the approaches compared relate to
the type of approach that they represent, the taxonomies of error
modes that they use, how the analyst goes about predicting the
errors with the technique and also what additional information is
provided once an error has been identified. In terms of the type of
HEI approach, the HET, SHERPA and Human Error HAZOP
approaches are examples of taxonomy-based HEI techniques,
which are characterised by their use of EEM taxonomies to identify
potential errors. Typically EEMs are considered for each component
step in a particular task or scenario in order to determine credible
errors that may arise during the man–machine interaction. Taxo-
nomic approaches to HEI are typically the most successful in terms
of sensitivity and are also the cheapest, quickest and easiest to use.
However, these techniques depend greatly on the judgement of the
analyst and their reliability and validity may at times be ques-
tionable. HEIST, on the other hand, is an example of an error
identifier prompt-based technique. These approaches use prompts
or questions to aid the analyst in identifying potential errors. The
prompts are typically linked to a set of error modes and reduction
strategies. HEIST is also different in this case since it also considers
performance-shaping factors. Whilst these techniques attempt to
remove the reliability problems associated with taxonomy-based
approaches, they add considerable time to the analysis because each
prompt must be considered.

As stated, the purpose of this study was to compare the perfor-
mance of HET against three contemporary Human Error
Identification (HEI) approaches when used to predict pilot errors
for an approach and landing task and also to compare, in terms of
error prediction sensitivity, the multiple methods and analysts
approach with multiple analyst predictions for each method.

8. Methodology

8.1. Participants

A convenience sample of 37 Brunel undergraduate students
aged between 19 and 21 years old was used for the study. Our
justification for using undergraduate participants with no previous
experience of HEI, civil aviation flight tasks and only limited
experience of human factors in general stems from the original
requirement for the methodology developed to be usable by non-
human factors specialists during the design and certification of
flight deck technology. For example, Marshall et al. (2003, p. 6)
stated that “the method should also be capable of being used by
non-human factors experts within the certification authorities”. Fur-
ther, the capture of potential errors during the early system
design phase requires that designers (with limited or no human
factors experience) are able to use HEI approaches. The participants
in this case therefore represent a ‘worst case’ population since they
have no experience of HEI or piloting; acceptable performance by
these participants would provide evidence that experienced
analysts would achieve acceptable results using the same approach.

The participants were allocated into four groups based upon the
HEI methodology that they used during their study (four separate
error prediction studies were conducted, one for each HEI meth-
odology). Group one consisted of eight male undergraduate
students. These participants formed the HET group and received
training in the HET methodology. Group two consisted of nine
undergraduate students. Of these six were male and three were
female. These participants formed the SHERPA group and received
training in the SHERPA methodology. Group 3 consisted of a further
nine undergraduate students. Of these seven were male and two
were female. These participants formed the HAZOP group and received
training in the Human Error HAZOP methodology. The fourth and final
group consisted of 11 undergraduate students. Of these, eight were male and three were female. These participants formed the HEIST group and received training in the
HEIST methodology. All participants had no previous experience
of any of the HEI methodologies used or of flying an aeroplane.

8.2. Flight task

The study focussed on the aircraft-landing task using ‘Land
aircraft X at New Orleans Airport using the autoland system’. This
task was part of the approach phase of a flight in Aircraft X
(a modern, highly automated, ‘glass cockpit’, medium capacity
airliner). This task was chosen as was deemed to be representative
of a typical civil aviation-landing task in an automated glass cockpit
airliner. An HTA was constructed for the flight task based on an
observation of a video recording of a similar landing task and
consultation with subject matter experts. An extract of the HTA is
presented in Fig. 2.

8.3. Materials

All participants were supplied with a training package for the
methodology in question. The training packages consisted of
a description of the method in question, a copy of the taxonomy associated with the error prediction method; a flowchart showing how to conduct an analysis using the method; an example output of the method and also an example of an analysis carried out using the method in question. Participants were also given an HTA describing the action stages involved when using a vending machine as part of the training and also an HTA describing the action stages involved when landing aircraft X at New Orleans using the Auto-land system for the main study. The participants were also provided with photographs of all flight deck instrumentation used in the flight task, i.e. flap lever, throttle lever, auto-pilot panel, Captains' primary flight display (in the appropriate mode), landing gear lever and the Captain's navigation display. All participants were also provided with suitable pro-formae for recording their error predictions. Microsoft Flight Simulator 2000™ Professional Edition was also used to give the participants a demonstration and walkthrough of the flight task under analysis.

8.4. Design

A between-subjects design was used in this study. The independent variables were the four different participant groups, the HET group, HAZOP group, HEIST group and SHERPA groups. The dependent variables were the four different participant groups, the method and also an example of the analysis carried out using the method in question. The analysis used for each of the methods was an HEI analysis of a Ford in-car radio cassette system (Stanton and Young, 1999).

Once familiar with their HEI method, participants were given an HTA of a vending machine task (Stanton and Stevenage, 1998) along with A3 photographs of the vending machine and its user interface on which to undertake practice HEI analysis. After a demonstration of the task and a walkthrough of the HTA, participants used their allocated method to make error predictions for the vending machine task. At this stage, participants were permitted to confer with other participants and also to ask the experimenter questions regarding the analysis. Once the error predictions were complete, participants were provided with an ‘expert’ analysis (undertaken by a human factors researcher with considerable experience in HEI) for the vending machine task so that they could compare their error predictions with an expert’s error predictions for the same task. The experimenter then discussed each of the errors predicted and answered any questions regarding the vending machine error prediction task.

After a short break, participants were then given the HTA for the task, ‘Land aircraft X at New Orleans using the Auto-land system’, as the experimental condition, along with colour photographs of all of the relevant flight deck equipment. After an initial walkthrough of the task, participants were given a step-by-step demonstration of the landing task using Microsoft Flight Simulator 2000 Professional Edition. Participants were then asked to predict any potential design induced pilot errors for the flight task independently from other participants. For reliability purposes, participants returned 4 weeks later to carry out a repetition of the analysis (hereafter

Fig. 2. Extract of landing task HTA (source: Marshall et al., 2003).
referred to as Trial 2) employing the same HEI technique that they had used during the first error prediction exercise (hereafter referred to as Trial 1).

8.6. Data analysis

To compute validity statistics, the error predictions made by each participant were compared with actual error incidence data reported by pilots using the autoland system for the flight task under analysis (which was obtained via questionnaire survey). In this survey pilots type-rated on the same aircraft were asked to report any errors that either they had made or they had seen being made by a co-pilot, for each of the task steps in the HTA, ‘Land aircraft X at New Orleans airport using the Auto-Land system’. A total of 46 pilots (45% Captains, 37% First Officers, 13.3% Trainee Captains, 4.7% who declined to state their position) with experience ranging from less than 2000 h to over 16,000 h (mean = 6, 832 h, SD = 4, 524 h) responded to the survey. Fifty-seven different error types were reported in the survey. A detailed description of these errors can be found in Marshall et al. (2003).

The sensitivity of each participant’s error predictions was calculated using the Signal Detection paradigm. The signal detection paradigm was used as it has been found to provide a useful framework for testing the power of HEI techniques and has been used effectively for this purpose in the past (e.g. Stanton and Stevenage, 1998; Harris et al., 2005). The signal detection paradigm sorts the data into the following mutually exclusive categories:

1. Hit – an error predicted by the analyst that was also reported by the survey respondents.
2. Miss – the failure to predict an error that was reported by the survey respondents.
3. False alarm – an error predicted by the analyst but that was not reported by the survey respondents.
4. Correct rejections – correctly rejected error that was not reported by the pilots. This represents the number of errors contained in the HEI methods error mode taxonomy that were correctly rejected by the analyst and also not reported by the survey respondents.

These four categories were entered into the signal detection grid for each subject. The signal detection paradigm was then used to calculate the sensitivity index (SI). This returns a value of between 0 and 1, the closer that SI is to 1, the more accurate the techniques’ predictions are. The formula used to calculate SI is given in Eq. (1) (from Stanton and Stevenage, 1998)

\[
SI = \left(\frac{\text{Hit} + \text{Miss}}{2 \times \text{False alarm} + \text{Correct rejection}} \right) + 1
\]

9. Results

Treatment of data: The data obtained had to be grouped first so that the multiple methods and analysts approach sensitivity could be calculated. For the individual HEI methods comparison the mean scores (SI, hit rate and false alarm rate) from each methods group (e.g. HET group, SHERPA group, HEIST group and Human Error HAZOP group) were calculated. For the multiple methods and analysts approach, six participant’s error predictions from each method group were pooled together. In order to be consistent in the comparison of the individual methods with the pool of multiple methods and analysts some cases had to be discounted, as not all participants turned up to all of the trials. A core pool of six participants in each of the groups was formed, whose data was then used to form the multiple methods and analysts group. The sensitivity of these error predictions (each method in isolation and the multiple methods and analysts approach data) was then assessed using the sensitivity index formula described above.

The mean Trial 1 and Trial 2 SI scores for each method and also the multiple methods and analysts approach SI score are presented in Fig. 3.

The SI score results show that the multiple methods and analysts approach achieved the greatest SI scores (Trial 1 = 0.69, Trial 2 = 0.69), followed by analysts using the HET approach (Trial 1 = 0.66, Trial 2 = 0.65). As sensitivity is made up of hit rate and false alarm rate, each of these was considered separately. The mean Trial 1 and Trial 2 hit rate scores for each method and the multiple methods and analysts approach hit rate score are presented in Fig. 4.

The hit rate score results show that the analysts using HET approach achieved the greatest hit rate scores (Trial 1 = 0.88, Trial 2 = 0.89).

The mean Trial 1 and Trial 2 false alarm rate scores for each method and the false alarm rate score for the multiple methods and analysts approach are presented in Fig. 5.

The false alarm rate scores show that, at Trial 1, the analysts using the Human error HAZOP approach achieved the lowest false
alarm rate score (0.35) whilst the multiple methods approach achieved the lowest false alarm rate score at Trial 2 (0.34).

Mann–Whitney ‘U’ statistical tests were performed to establish if the observed differences between the sensitivity index, hit rate and false alarm rate scores for the different approaches were significant. The results are presented in Table 2.

The results presented in Table 2 demonstrate that at Trial 1, the multiple methods and analysts approach SI scores were significantly better than the analyst mean SI scores using either HAZOP, SHERPA and HEIST, but not significantly better than the HET mean SI score and at Trial 2 that the multiple methods and analysts approach SI scores were significantly greater than the analyst scores using SHERPA and HEIST, but not HET and HAZOP scores.

For hit rate at Trial 1, the multiple methods and analysts approach score was significantly higher than the HAZOP and SHERPA scores, but was not significantly greater than the HET and HEIST hit rate scores. For hit rate Trial 2, the multiple methods analysis approach score was significantly greater than the SHERPA and HAZOP scores, however, the analysts using HET and HEIST achieved significantly greater hit rate scores at time 2.

For false alarm rate, at Trial 1 the statistical analysis indicates that the multiple methods and analysts approach score was lower (and therefore better) than the analysts using HAZOP, SHERPA and HEIST, but that the difference between the multiple analyst and methods analysis and the analysts using HET was not significant. For false alarm rate Trial 2, the multiple methods and analysts analysis approach scores were significantly lower than analysts using HET and SHERPA, but were not significantly lower than the analyst scores for HAZOP and HEIST.

10. Discussion

10.1. Error prediction sensitivity

This study had two main objectives. The first objective of the study was to compare the accuracy of the HET approach when used to predict design induced pilot error against three other contemporary HEI approaches developed in other domains. In conclusion, participants using the HET methodology were the most accurate in their predictions for the flight task under analysis, both at Trial 1 and Trial 2. This study therefore provides validation evidence in support of the HET approach for predicting pilot error on civil flight decks. Previous studies have also demonstrated that the HET approach is more accurate than HAZOP, HEIST and SHERPA when used to predict errors for the same flight task (Stanton et al., 2006).

The superior performance of the HET approach in this case was most probably attributable to the fact that the HET error mode taxonomy was developed, in part, based on a review of civil aviation incidents. On the other hand, SHERPA, Human Error HAZOP and HEIST were developed for the nuclear power and process control domains. This meant that analysts were somewhat constrained in terms of the errors that they could predict, since the taxonomy used in these methods taxonomy may not have contained errors of the type that might occur on civil flight decks.

The second objective of this study was to test an approach to enhancing the sensitivity of error predictions, the multiple methods and analysts approach. In terms of the overall accuracy of the error predictions, it was observed that the multiple methods and analysts approach was significantly more accurate than the multiple analyst approach using HAZOP (at Trial 1 only), SHERPA and HEIST at predicting errors for the flight task, but not significantly more accurate than the error predictions offered by the multiple analysts using the HET approach (nor HAZOP at Trial 2). It is concluded from this that the multiple methods and analysts approach is not significantly more accurate than the HET approach when used to predict pilot errors for the landing task in question, however, this finding does have implications for the prediction of human error in complex systems. For example, in some cases, it suggests that it may be more appropriate to use multiple methods and multiple analysts to predict errors, rather than only one method in isolation. On the basis of the findings derived from this study, using a group of analysts and HEI methods to predict error can enhance the sensitivity of error predictions, whereas using only one method could potentially lead to critical errors being missed during the error prediction process. This certainly appears to be the case when attempting to predict error in domains for which no HEI approaches have been specifically developed. One way of enhancing the sensitivity of the error predictions made would therefore be to use a combined toolkit of a range of HEI methods from other domains.

This research lends support to Kirwan’s (1998a,b) argument for the use of a comprehensive multiple methods (i.e. toolkit) approach. The differences in the taxonomies of different methods may ensure greater capture of the types of error that are likely to occur. Alternatively, methods that have been developed specifically for the domain in question appear to perform equally as well when multiple analysts are utilised. It is assumed that the superior accuracy of the multiple methods and analysts approach over and above the three other HEI methods was due to the error mode taxonomy being more comprehensive as in this case it was effectively four error taxonomies combined. This comprehensiveness of the error taxonomy is likely to lead to an increase in the numbers of
errors correctly identified (e.g. hits) and thus reduce the number of errors that are missed (e.g. misses). On the downside, the increased number of error modes could potentially increase the number of wrongly identified errors (e.g. false alarms) and decrease the numbers of errors correctly discarded (e.g. correct rejections). This was not the case in this study, however, with the multiple methods and analysts group performing better in terms of SI and false alarm rate scores. Further, as pointed out earlier, in some circumstances (i.e. in safety critical systems analysis) it may be acceptable to generate a high false alarm rate if it contributes to the detection of more errors. It is recommended, however, that when using a multiple methods and analysts approach, appropriate subject matter experts with a sufficient level of experience in HEI are used or a combination of subject matter experts and methods experts working together (Stanton and Stevenage, 1998). It should be noted that the analysts in this case were neither experts in the domain of civil aviation nor were they experts in the application of HEI techniques. It would be expected that the signal detection theory statistics should be higher (i.e. error predictions more accurate) if this were the case.

It is acknowledged that the use of a convenience sample of participants with no experience of HEI methods or piloting in general was a significant limitation of this study. As stated earlier, the sample used in this case represented a worst case sample (i.e. no domain or HEI method experience). Further, this limitation was tempered by the relatively good performance of the participants involved and suggests, provided that an appropriate methodology and task description is used, that domain expertise might not be as critical as is assumed.

In closing, this study has demonstrated that the HET approach is a viable tool for identifying design induced pilot errors within the civil aviation domain. The level of accuracy attained by inexperienced analysts when using the HET approach to identify such errors is encouraging and suggests that the HET approach, when used by domain experts with significant experience in HEI analysis, can potentially be a very powerful tool for accurately identifying design induced pilot error. Further, this study seems to suggest that error prediction sensitivity can potentially be enhanced through the use of a multiple methods and analysts approach, which indicates that future HEI analyses efforts should utilise teams of HEI analysts with access to a toolkit of different HEI approaches.

It is recommended that further research into means of enhancing error prediction accuracy be undertaken. Also, further applications of the HET approach within the aviation domain are encouraged. Further, whilst this study has demonstrated that using multiple analysts and methods may enhance error prediction sensitivity, it is clear that further investigation in other domains in which error prediction is dominant is required, such as the process control and air traffic control domains. The usefulness of HEI techniques is already assured. However enhancing the accuracy of the error predictions offered by such techniques can only make them more powerful tools within system design and analysis efforts.

Acknowledgements

We wish to acknowledge that this research was made possible through funding from the Department of Trade and Industry as part of the European EUREKA! Programme. Our thanks go to John Brumwell & Gillian Richards of the CARAD Advanced Systems Programme at the DTI and Richard Harrison (now at QinetiQ) who have provided invaluable support to this research and also to Air2000, British Midland and JMC airlines and their pilots for taking the time to complete the questionnaire.

References

